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SUMMARY 
 
This study explores the application of geological 
logging as proxies to economic mineralization using 
machine learning techniques and evaluation by 
producing high-confidence expansion drill program 
targets. The authors introduce chosen features 
considered and included in the resource modelling 
process, the relative improvement in block-level 
estimation metrics compared to the mine site’s 
resource model, and the drilling results from the 
mineralization zones identified by this approach. 
The authors present the results of this study and drill 
program for an iron-oxide copper group deposit in 
Candelaria-Punta del Cobre region, Atacama 
Desert in the northern region of Chile.  
 
The authors demonstrated methods include 1) 
identifying statistically significant non-linear 
correlated lithological features using data analysis 
and visual inspection 2) limited feature selection to 
prevent overfitting, and 3) evaluation criteria to 
determine efficacy of the AI-based resource 
estimation method. The AI-based model’s blind 
reconciliation of data tested over 8 quarters, with 
0.5% Cu cut-off grade, shows an increase of 1.67x 
reconciled mineralization while maintaining the 
same sensitivity (false positive rate) as the 
benchmarked site resource model. The AI-based 
model includes input channels of assayed Cu and 
visually logged barren rock where the visually 
logged barren rock is pattern-matched against 
assayed 0.0% Cu to teach reduce the error of the 
visual logs.  
 
The model was used to produce a 2000m 
underground expansion drilling program; the 
program successfully identified three new 
mineralization zones of economic Cu where waste 
was previously predicted by the benchmark site 
model. A total of 11 holes were drilled where all 
holes intersected high grade Cu zones (3 times 
higher than cut-off), all at least 10m away from 

known mineralization. The total in-situ value 
uniquely identified and verified to Measured was 
7.7kT of Cu above cut-off grade.  Future work 
should focus on expanding geochemical and 
lithological datasets and exploring additional 
geological variables to improve predictive 
capabilities specific to each deposit and regional 
archetype. 
 
1. Objectives  
 
1. To create a method of reliably feature 

engineering geological logging for mine-site 
spatial modelling. Feature engineering 
refers to the selection criteria and 
techniques needed to incorporate data into 
machine learning. 

2. To evaluate whether DL models that use 
geological logging are more accurate than 
models based entirely on geochemistry 
and/or Kriging models (based on categorical 
indicator Kriging (CIK) and/or mineralized 
zone (MZ) domaining). 

3. To create a computationally efficient method 
for screening which geological logs are 
useful for DL modelling prior to model 
training. 

 
The deposit where the pathfinder screening 
algorithm (PSA) system is applied is a Copper mine, 
Manto-type iron oxide copper gold deposit, located 
in the Candelaria-Punta del Cobre district, Region 
III, Chile. 
 
2. Background  

Machine Learning and Deep Learning 

Recently, machine learning (ML) has emerged as a 
powerful tool for revealing complex patterns in data. 
At its core, ML algorithms learn from historical data 
to better forecast a future pattern or trend. Although 
ML, and more generally, AI is defined as such 
above, DL is the term used for one of the most 



 

powerful ML algorithms; it uses multiple layers of 
artificial neurons that are composited into a deep 
neural network (i.e. convolutional neural network 
(CNN) (O'Shea and Nash, 2015). The concept is 
loosely modelled on the way neuroscientists believe 
the brain behaves when it identifies patterns in very 
large data sets. DL has seen much success in the 
field of image recognition (e.g. medical imaging) as 
well as machine translation, the AI process of 
automatically translating text from one language to 
another (Goodfellow, Bengio and Courville, 2016). 

ML and DL’s inherent advantage over traditional 
Kriging methodologies is its unique ability to 
leverage non-linear correlation trends, its capacity 
to model geological logging data and identify high 
quality data sources by learning from historical data. 
Geological logging data can be defined as any type 
of data that is collected through visual inspection of 
samples, done typically with drill core. While 
geological logs are inherently qualitative in nature 
when compared with assays, it nevertheless has 
significant value as a dataset. The biggest 
advantage of geological logging is its cost-efficient 
acquisition. However, the major challenges of 
working with geological logs in spatial modelling 
include identifying how to best leverage the data 
while considering its qualitative limitations, 
interpretation bias (e.g. a deposit logged by multiple 
geologists with evolving interpretations) and a 
relatively low SNR ratio (given that some of the 
parameters logged may be irrelevant to spatial 
modelling). 

The DL algorithm and nomenclature referenced in 
this paper by First et al (2023) is repeated in this 
paper. For example, DRC(Au, MZ) ~ DR references 
a gold resource model that uses diamond drillholes 
(D), RC drillholes (R), rock-chip (C) assays as 
inputs into the model, Au assays and MZ geological 
logging data as a separate input channels and DR 
(on the righthand side) as drillholes (D) and RC 
drillholes (R) as a proxy for ground truth or the 
‘correct’ answer, by which the DL model learns the 
spatial distribution of gold.  

The primary advantage of subdividing the inputs 
from the ground-truth readings is to manage lower 
quality assays, such as rock-chip samples, which 
may be useful in spatial modelling but cannot be 
relied on greatly to teach the model the accurate 
answer on a block level. In other words, rock-
chipping 10g/t Au from a block may be useful 
information for a machine learning model to 
understand the spatial distribution of gold; however, 
that sample cannot be used to denote the entire 3m 
x 3m x 3m smallest mining unit (SMU) as 10g/t Au 
given that the chip samples could be collected 
inside of a 50cm vein, a highly bias form of data. 

The ML algorithms used in this paper are written in 
Python, a programming language that distinguishes 
itself from other programming languages with its 
flexibility, simplicity and large number of available 
open-source tools required to create modern 
software, including machine learning algorithms. 
Python helps software engineers focus on solving 
logical problems rather than spending time on the 
basics of the programming language. This is one of 
the primary reasons that Python is the language of 
choice for machine learning and data science in 
general. PyTorch is the ML library that houses the 
open-source tools used to construct neural network 
layers. These neural network layers are paired with 
CUDA (Compute Unified Device Architecture), a 
computing platform developed by NVIDIA to interact 
with Graphics Processing Units (GPUs). NVIDIA is 
a technology company that designs and 
manufactures GPUs. 

Deep Learning Limitations 

While powerful, DL models are not without 
limitations. A DL model is inherently error-resistant 
to a certain level of noise within data but are not 
totally immune. Unfortunately, most geological 
logging data is noise from the perspective of its 
usefulness in resource estimation. Most geological 
logs carry limited value for copper grade modelling. 
However, a recently developed method, ablation 
analysis, has been found to be invaluable when 
selecting which geological data channels are 
productive inputs into DL models (Meyes et al, 
2019). 

The ablation analysis method individually runs all 
potential input channels to identify which ones add 
value to an estimation. For example, if the objective 
is to build a gold resource model that is enhanced 
using geological logging, ablation analysis will 
produce recommendations akin to D(Au, X) ~ D, 
where every X is a unique geological logging code, 
whether it be a lithology, alteration or geotechnical 
code. 

However, many particularly larger deposits, have a 
penchant for numerous unique lithological and 
alteration logging codes, making the analytical 
process cumbersome and computationally 
impractical.  The techniques to identify which input 
channels to use and the most efficient way to 
encode them, collectively feature engineering, is 
explained in Methods. 

Geological Logging Limitations 

Geological logging has two major applications when 
being applied to spatial modelling at mine sites: 1) a 
pathfinder for mine site exploration and resource 



 

estimation and 2) as a proxy for a geochemical 
assay or mineralogical test. 

Its usefulness as a pathfinder in the discovery of 
new and/or missed ore is evident when drill core is 
logged as being barren or poorly mineralized but 
contains a geological logging code that is directly or 
indirectly indicative of high-grade mineralized zones 
nearby. A common example discussed below is 
mineralized zone (MZ) logging. 

Geological logs can be used as proxies for assays, 
alteration mineralogy, rock competency, etc. Most 
mines only prescribe a full assay suite (ICP-MS), 
detailed mineralogy / petrology or rock strength 
tests on a select few mine site samples (as it would 
be prohibitively expensive to collect thorough assay 
suites for all inputs used in a resource model).  

Mines, particularly underground operations, have 
significant budgetary constraints on data collection 
expenditure, therefore the number of samples 
assayed, especially from third party laboratories, 
are restricted and/or relegated to mine site 
laboratory, apart from a few confirmation assays. 
The total meterage of core assayed is also 
restricted, often resulting in weak to moderately 
mineralized core not being assayed at all if it visually 
appears to not host economic mineralization, 
thereby directly impacting modelling accuracy. 

However, fortuitously geological logging can serve 
as a proxy for a geochemical assay and alteration 
mineralogy. While out of scope for this paper, 
geotechnical parameters such as RQD, have the 
potential to be a proxy for rock competency that 
cannot easily be measured in a laboratory.  

Geological logging is already used in spatial 
modelling in the mining industry in two major ways: 
categorical indicator Kriging (CIK) and MZ 
domaining (Glacken and Blackney, 2022). In 
categorical indicator Kriging, categorical logs are 
used to encode whether a sample is oxide, 
transitional or sulphide and is represented by 
integer values when applying Kriging to the data; for 
example, oxide ore is represented by 0, transitional 
ore by 0.5, sulphide ore by 1. The final estimates 
are rounded based on the mine’s error tolerance in 
each class. Some mines may vary the transition ore 
estimate (e.g. 0.7 considered to be sulphide) 
depending on processing constraints. 

Domaining with geological logs has some unique 
challenges, particularly with respect to nuggety and 
structurally controlled deposits. Many orogenic and 
intrusion-related gold deposits, geologically log MZ 
and quartz veins. Essentially, if the core from the 
geologist’s perspective visually looks like it is 
potentially mineralized, it is logged as such, 
irrespective of the gold assay collected later. An 

issue of note is that MZ is often used as a descriptor 
for many of the pre-mineral lithologies, resulting in 
extra lithological codes. 

The logging data used to assist in the construction 
of domains by constraining the mineralized zones of 
these nuggety deposits, thereby critical to the 
mineral resource estimation process as there is 
extreme variation in gold distribution within a small 
volume. Frequently within these orebodies, 
unrepresentative (barren or subeconomic) rock-
chip or drill core assays can be sampled in very 
close proximity to well-mineralized drill core; as 
such, RC chip or rock-chip samples make grade 
estimation of ore blocks very challenging.  

While geologists are proficient at handling the non-
linear nature of geological logging, there is 
substantial risk, as the resource model becomes 
beholden to the subjective interpretation of the 
geological logging team and potentially an 
overreliance on categorical indicator Kriging and/or 
mineralized zone domaining (Glacken, Rondo and 
Levett, 2023; Sims, 2023). 

While these two methods demonstrate that 
geological logging has inherent value in spatial 
estimation, they are limited in its usefulness due to 
Kriging’s inherent linear interpolation-based 
algorithm. The two methods are also incapable of 
accurately modelling mixed data types, like 
unassayed core where it could be interpreted as 
either barren or weakly mineralized even though it 
visually appears barren. There are non-linear 
geostatistical methods that have been applied, like 
multiple indicator Kriging and localized uniform 
conditioning; however, they have proved 
challenging to implement (Zhang & Glacken, 2023). 

As discussed above, geological logs are critical 
when manually domaining an orebody but have 
proved imperfect when modelling due to the 
subjective nature in the logging process. There is a 
natural tendency for geologists to subdivide or split 
the lithologies instead of looking holistically for 
commonality within the data such that productive 
modelling inputs are derived by lumping lithologies 
together.  

This results in situations where a large component 
of the ‘signal’ is lost such that the detailed 
information is not incorporated into the Kriging 
model. To circumvent this issue, many mines create 
ever smaller domains with the aim of capturing the 
geological complexities of the deposit. This results 
perversely in the domains guiding mine planning 
and mine site exploration, rather than Kriging 
estimation. 

A naïve solution would be to undertake an ablation 
analysis on the ten most common logging codes. 



 

Regrettably, the most common codes are not 
necessarily the most useful ones for resource 
modelling as the economic mineral resources is 
invariably restricted to anomalous geologically 
zones. Therefore, it has become necessary to 
derive a method that can screen geological logs 
with relatively high degree of accuracy for their 
usefulness in spatially estimating a parameter (e.g. 
gold or copper value). 

 
3. Method 
 
Machine learning models are trained using 
geological logs at three deposits to test the 
applications of proxy and pathfinder logging under 
different geological environments. This protocol 
derives a general solution with wide applicability for 
feature engineering of geological logging. 

Copper Mine – Introduction  

The mine is located at Region III Chile. The district 
is characterized by an early-Cretaceous volcanic-
sedimentary arc sequence with mineralization 
hosted primarily in the upper part of the Lower 
Andesite member Punta del Cobre Formation, 
which is overlain by volcano-sedimentary and dacite 
members. This host sequence consists of a thick 
succession of volcanic andesite flows and 
intercalated volcaniclastic breccias. This is overlain 
by the marine-sedimentary Chañarcillo Group. To 
the west the Copiapó batholith (diorite to quartz 
monzonite) was emplaced during a period of 
regional tectonic reversal from extensional to 
transpressional. Geochronological studies infer that 
the main phase of mineralization overlaps with the 
two major early phases of the Copiapó batholith 
emplacement, although there is no conclusive 
evidence to indicate from the exposed phases of the 
batholith that it was the source of mineralizing fluids 
(del Real, Thompson and Carriedo, 2018). 

The orebodies are mineralized with magnetite, 
chalcopyrite, and pyrite, with lesser pyrrhotite and 
sphalerite as veinlets and disseminations (locally 
semi-massive sulphide bodies) and is hosted within 
highly altered favorable lithological units, fault zones 
and breccias. These mineralizing fault systems are 
predominantly controlled by a series of high-angle, 
northwest-striking regional structures. The 
stratigraphically controlled replacement 
mineralization forms extensive stratabound ore 
bodies that are locally termed ‘Mantos’. Textural 
studies indicate that the hydrothermal system 
evolved and progressed outwards and upwards 
from sub-vertical feeder structures as the 
replacement occurred. These sub-vertical feeder 
structures manifest as the mineralized fault zones 
and breccias, which acted as primary conduits for 

hydrothermal fluids to access and spread laterally 
within the more permeable and reactive andesitic 
host rocks. 

A distinctive early sodic-calcic alteration (actinolite, 
albite, scapolite, epidote) characterizes the district, 
which is locally overprinted by potassic ± calcic 
alteration (actinolite - biotite (green – high Mg) - K-
feldspar) alteration associated with the Manto 
mineralization (Ichii et al, 2007). This later potassic 
assemblage is texturally and genetically linked to 
the main chalcopyrite mineralization event, defining 
the core of the economic orebodies. 

 

Copper Mine – Methodology 

Copper resource modelling integrated with lithology 
logging is another example of a proxy logging 
application. Roughly half the mine drillhole data set 
is visually deemed to be barren and remains 
unassayed for copper or any other element. 
However, irrespective as to whether the core 
remains unassayed, it cannot be assumed to be 
barren (~0.0% Cu) from a modelling perspective. 
Although the underground mine has a relatively high 
cutoff grade (0.5% Cu), a weakly mineralized 0.2% 
Cu assay is fundamentally different from barren 
0.0% Cu assay, as the former sample may indicate 
mineralization in close proximity, while the latter is 
likely to have little significance and be indicative of 
a barren zone. 

Two solutions are proposed to resolve the issue: 

1. D(Cu, ZFCU) ~ D(Cu), Utilize an 
independent input channel. Rather than 
assuming that unassayed core can be 
assigned a 0.0% Cu value, use the ZFCU 
(zero filled copper) as an extra channel into 
the model to indicate material that has been 
visually logged to be barren but is 
unassayed. 

2. D(Cu, ZFCU) ~ D(Cu, ZFCU). Utilize both as 
an independent input channel and as a 
measure of ground truth. In addition to 
approach 1, for samples that are unassayed 
and logged as barren, assign 0.0% Cu, and 
use it to teach the model the correct answer 
for the copper grade for a certain block. 

It is impossible to sample the true copper 
distribution for unassayed core without additional 
data collection (assaying) and it is improbable the 
mine will assay significant quantities of core 
previously logged as barren or weakly mineralized 
and excluded from their mineral resource model. 

Three DL models are created: 1) using available Cu 
assays only, 2) using the Cu assays and unassayed 



 

drill core (ZFCU) as an independent input and 3) 
using the second method as input but with a 
measure of ground truth for areas that are 
geologically logged as barren (i.e. unassayed). 

Figure 2 illustrates it is not easy to visually 
differentiate barren core (<0.05% Cu) from low-
grade (weakly mineralized) core (0.05 - 0.25% Cu). 
Visual observations indicate that assigning a 0.0% 
Cu grade to unassayed core carries a substantial 
risk to the DL model as the algorithm is likely to 
determine an area is barren to economic 
mineralization due to the predominance of 
unassayed core. 

 
4. Results  

DL MODEL EVALUATION 

It is necessary to create an accurate method by 
which to test and evaluate DL models against one 
another to establish the value of incorporating 
lithology logs for each deposit into the DL modelling 
process. 

Overview  

As the Atacama Kozan is an underground operation 
it was best to evaluate the quality of each model by 
their forward-facing precision and recall; the copper 
DL model is created using data collected prior to 
2021 and compared against drilling data collected 
in 2021 - 2022. To ensure enough data was used to 
evaluate the copper DL model, two years of data 
collection were used for comparison instead of one. 
The models were evaluated based on precision and 
recall. 

• Precision is the percentage of blocks 
predicted as economic high-grade (HG) that 
are reconciled as HG in forward-facing 
diamond and RC drilling. It tracks the 
frequency of false occurrences, as in 
incidences when a HG block or vein 
projected in the mine plan reconciles as 
waste.  

Precision can alternatively be interpreted as 
the false positive rate, denoted in Figure 3a. 
A model with a precision of 100% reconciles 
HG in all blocks predicted as HG while a 
model with a precision of 0% exclusively 
reconciles waste inside of HG blocks 

• Recall is the percentage of reconciled HG 
that is predicted as HG. It tracks the 
frequency of false negative occurrences, as 
in occurrences that veins exist, but were 
missed by the resource model. 

Recall can alternatively be interpreted as the 
missed mineralization rate, denoted in 
Figure 3b. A model with a recall of 100% 
misses no mineralization while a model with 
a recall of 0% does not predict any block 
drilled as high-grade. 

The objective of the resource model is to model 
additional copper mineralization that can be 
incorporated into the resource definition drilling 
targeting program, without lowering the sensitivity of 
HG misclassification beyond a minimum threshold 
(i.e. cutoff grade). 

Copper Mine 

Figure 3a and Figure 3b illustrate false positive and 
missed mineralization rates, respectively, between 
different DL models. The 2021 Kriging model is also 
included which is created using ordinary Kriging in 
mineralization domains. 

The elevated forward-facing false positive rate in 
reconciliation is common in resource definition 
drilling of underground base metals and precious 
metals deposits. This is because resource definition 
drilling tends to be drilled in areas with less data 
than grade-controlled regions in underground 
deposits, which tend to have a higher cut-off grade. 
This invariably results in less HG blocks defined as 
a whole, when compared to waste. The false 
positive rate generally decreases to <50% for grade 
control drilling. Furthermore, for expanding the 
resource, the sensitivity towards finding more 
economic ore should be greater than the sensitivity 
to finding waste predicted as ore. 

For the D(Cu, ZFCU) ~ D(Cu, ZFCU) model, it has 
the lowest missed mineralization rate of 71.8% 
compared to the Kriging model rate of 83.2%, 
whereas the D(Cu) ~ D(Cu) model is 82.8%. The 
D(Cu, FCU) ~ D(Cu, ZFCU) model missed 
mineralization rate of 71.8% indicates that 28.2% of 
material reconciled as HG in 2021 - 2022 was 
predicted as HG by the DL model using pre-2021 
data. Similarly, the Kriging model missed 
mineralization rate of 83.2% indicates that 16.8% of 
material reconciled as HG in 2023 was predicted as 
HG by the Kriging model using pre-2021 data. This 
translates to a 1.67x increase in reconciled 
mineralization while having the equivalent 
sensitivity (i.e. false positive rate) as Kriging. D(Cu, 
ZFCU) ~ D(Cu, ZFCU) uses assayed copper and 
visually inspected (i.e. barren vs not-barren) copper 
as two separate channels into the model.  

The model inputs use unassayed visually barren 
core as an example of ground truth to teach the 
model that visually determined barren material has 
a copper grade of 0.0%. The D(Cu, ZFCU) ~ D(Cu, 



 

ZFCU) model has a lower missed mineralization 
rate than both D(Cu) ~ D(Cu) model (which ignores 
all visually inspected core) and the D(Cu, ZFCU) ~ 
D(Cu) model (which uses logged core as an input 
without ground truth to verify the accuracy of the 
log). 

Drill Program Field Testing 

Extensive testing has been undertaken at Atacama 
Kozan mine site. The DL models were used to guide 
a successful 2,000m underground drilling program 
that successfully identified three new zones of 
additional economic copper ore, where waste was 
previously predicted by the Kriging model. The 
constraints in which areas are identified as 
economic and uneconomic as well as the minimum 
economic volume to be considered worthwhile for 
adding to mine plan were also considered. Three 
zones were considered for drilling where the optimal 
outcome would be to classify as many blocks in 
those zones as Measured, thereby making it eligible 
for addition to mine plan. The threshold chosen to 
classify an area as unique was a 60% difference in 
contained lbs. Cu where the DL models predict a 
given volume as economic (above cut-off grade) 
whereas the site’s Kriging-based model predicts it 
as waste.  

Three zones were chosen, mineralization zones 6, 
16, and 65 to evaluate the performance of the DL 
model over Kriging in finding areas of unique 
economic ore. The eligible mineralization zones are 
at least 10m away from any known mineralization 
(denoted in the depletion model or the site’s Kriging 
model); this would rule out natural extensions from 
pre-existing mineralization zones. The threshold for 
success was 0.24kT of in-situ Cu that would be 
added to mine plan (i.e. verified to Measured). A 
total of 12 holes were drilled in each of 
abovementioned clusters to execute this evaluation; 
the length of the drillholes ranged from 100m to 
296m and is drilled from within the infrastructure.  

Table 1 presents, for each target mineralized zone, 
the statistics that illustrate the estimated values 
prior to drilling and the results obtained after drilling 

Visually, all holes hit high grade intercepts (>0.5% 
Cu) and each contributed to adding a large 
percentage of the predicted mineralized target to 
Measured. Target 65 was interesting as it was 
predicted outside of a fault zone, that was initially 
understood to have caused mineralization 
discontinuity. The verification of high-grade 
mineralization in this zone resulted in re-evaluating 
that region west of the core infrastructure as being 
more likely to be a largely justified shear as opposed 
to a hard fault that would have stopped fluid from 
traversing that structural discontinuity. Furthermore, 

it was verified that the orientation and pattern done 
in previous drilling and marginal Cu grades from 
those assays were contributing factors to the 
difference in evaluation of each target prior to the 
use of the DL models. Furthermore, it shows that 
certain areas within the overall volume of each 
target have more high-grade mineralization and 
those areas should be added to the mine plan first, 
after which low-cost RC drilling can be employed 
later to evaluate the remaining lower grade blocks 
of the volume (after the stopes have been planned). 
Therefore, the DL model is particularly useful in 
finding the outlier high grade Cu blocks within a 
larger volume that would be ordinarily smoothed by 
a Kriging-based model.  

The figures 5, 6 and 7 illustrate the drilling done prior 
to the evaluation above and the drill plan that was 
created for each target.   

These figures emphasize the importance of 
orientation and retaining high grade assay 
information when modelling the resource. For 
example, in target 16, the lone drillhole that hit the 
boundary did show high grade intercepts, however, 
the fan pattern used and the length of the holes 
resulted in the majority of the volume being missed. 
Targets 6 and 65 historical drilling have suboptimal 
orientations that cut perpendicular to the high grade 
mineralization; therefore, when compositing, the 
high grade is smoothed such that the overall value 
of these zones are smoothed to marginal or 
uneconomic volumes. 

 The final result of the drill program added 7.7kT of 
in-situ copper to the mine plan where two of the 
verified economic zones were found within 
infrastructure and other explored into areas outside 
the infrastructure for expansion. The total number of 
meters drilled was 2200 meters. Table 2 shows the 
performance of the DL models as applied to this drill 
program compared to benchmark drilling done in 
the previous 2 years.  

Assuming the same number of meters drilled 
between the two years, the estimated savings per 
meter for each kT verified is 25%. This study also 
concludes that efficient drilling to target potential 
mineralization zones does cause a substantial 
decrease in drilling costs. 

 
5. Conclusions 
 
ML application at the copper mine has demonstrate 
the efficacy and best practices surrounding the use 
of proxy logging, the use of visual logging as a proxy 
for geochemical assays in resource modelling. 
Visual logging is best used as a supplementary 
input channel into DL models, including but not 



 

limited to binary codes for core unassayed but 
visually assumed to be barren for Cu modelling. 
Additionally, for coordinates that do not have 
geochemical assays but do have logging; logging, 
despite its limitations, is a beneficial example of 
‘ground truth’ by which to each the model correct 
answers by converting geological logs to their 
respective most likely geochemical proxy, for 
example, converting visually barren core to 0.0% 
Cu. 
The result of the drilling program was 7.7kT or 
~$64M in-situ value of economic copper that was 
not found by the existing resource model at 
Atacama Kozan. Furthermore, this study showed 
that efficient pad placement, spacing, and 
orientation also reduced drilling costs by 25% over 
the baseline drilling done by the site between 2020 
and 2021.  
 
The results have determined that DL models that 
use geological logs as input are more accurate than 
DL models based exclusively on geochemistry 
and/or Kriging models, utilizing categorical indicator 
Kriging (CIK) and/or mineralized/unmineralized 
domaining in a wide range of deposit classes. Both 
pathfinder and proxy logging proved to be highly 
applicable in machine learning resource modelling 
and can be used both to reduce the missed 
mineralization rate, false positive rate, and 
mathematically identifying areas where unique 
economic ore can be found. Furthermore, retaining 
high grade information that is usually lost in 
compositing can lead to a natural “downgrade” to 
the quality of any area of interest within an orebody; 
for complex deposits like IOCG, high grade 
information should be retained to find the high-
grade pockets within a larger but more marginally 
mineralized zone. These lithological and 
compositing considerations done with the inputs 
directly into the DL model yielded the 
aforementioned drill program results. 
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8. Images & Tables 
 
Figure 1: S.C.M Atacama Kozan Geological Profile 
 

 
Atacama Kozan, “Introduction presentation,” PowerPoint presentation, 2021. 
 

Figure 2: Visual inspection of low-grade material 
from the Copper Mine 
 

 
Atacama Kozan, “Introduction presentation,” PowerPoint presentation, 2021. 

 
Figure 3a: False positive mineralization (>0.5% Cu) 
2021 – 2022 for the copper mine 

 
Own elaboration based on Stratum AI data. 
 

Figure 3b: Missed mineralization (>0.5% Cu) 2021 
– 2022 for the copper mine. 

Own elaboration based on Stratum AI data. 

 

Figure 4:  AI Unique Mineralization Zones 

 
Own elaboration based on Stratum AI data. 
 
 

Figure 5: Target 6: Historical Drilling vs Drill Plan 

Own elaboration based on Stratum AI data. 

 

Figure 6: Target 16: Historical Drilling vs Drill Plan 

Own elaboration based on Stratum AI data. 

 

Figure 7: Target 65: Historical Drilling vs Drill Plan 

Own elaboration based on Stratum AI data. 



 

 

Table 1: AI Unique Mineralization Zones results 
 

 
Own elaboration based on Stratum AI data. 

 

Table 2: AI Guided Drillholes results 
 

 
Own elaboration based on Stratum AI data. 
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